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In this paper we describe the results of our efforts to analyze and compare by computer
simulation three common methods of measuring detector nonlinearity (1) superposition
method, (2) attenuation method, and (3) differential or ac-dc method. We describe a
definition and expressions which we used to intercompare the data analyses of these
methods. Issues that are common to these methods or specific to one individual method
and have an impact on the measurement accuracy were studied. We conclude that
superposition and differential methods are better choices than the attenuation method.
Suggestions about the choice of polynomial order of the fitting curve with regard to the
data accuracy and detector nonlinearity are also given.

Introduction

To extend the useful power range of optical fiber power measurement equipment it is
often desirable to characterize their output response nonlinearity over large power ranges.
When selecting the optimum method for performing these nonlinearity measuremen~ we
must carefully consider the major issues that affect the uncertainty of the results. These
issues include: measurement procedure% characteristics of the data acquire~ and the data-
processing algorithms used. Unfortunately, results of different measurement methods are
often reported in terms that make comparisons difhdt..

A quantitative analysis is helpful in choosing a nonlinearity measurement method which will
achieve the highest accuracy. Since it was impractical for us to test every option by
experiment we conducted simulations to study these issues. We compared three commonly
used methods under identical conditions and studied the error propagation in each case.
The results of this study are presented using a single definition of nonlinearity in order to
assure a straight-forward comparison of the results.
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Definition and Basic Exmessr“Ons
I m,--

Detector nonlinearity is defined as the
Pc -------------------------

relative difference between the responsiviiy at
an arbitrary power and the responsivity at the
calibration power[l]. It can equivalently be
expressed as an error due to the nonlinearity
in the measurement of optical power incident

2onto the detector:

NL3i&m-p) /p, (1)
v’ 8

where P is the incident optical power and P
~~ Figure 1. A conversion function.

is the measured optical power.
nonlinearity ~ thus varies with input
power. P. depends on the power at which the detector is calibrated. For convenience, this
definition of nonlinearity is expressed in terms of the detector output V, which can be
electric current voltage, or the reading of a power met.em

(2)

where V is the output at which nonlinearity is evaluated, V. is the output at which the
detector is calibrate~ and P=g(V) is called the conversion function, which relates the input
power P to the output V. Once the conversion function g(V) of a detector is known, its
nonlinearity can be calculated. Figure 1 illustrates the conversion function. The inverse
function of the conversion function is called the response function and gives the output
response per input power relationship. The response function and the conversion function
represent the same curve in inverted variables. The nonlinearity can equivalently be
expressed and calculated in terms of the response function and input power P.

It is often necessay to evaluate the nonlinearity of a detector before it is calibrated and
sometimes even though it has been calibrated, the calibration point needs to be changed.
For most commonly used detectors whose nonlinearity is no more than a few percent we
derived a simple expression that relates nonlinearity referenced to one calibration point V’C
to nonlinearity referenced to another calibration point V;

(3)

‘his expression allows us to evaluate the nonlinearity of a detector by assuming a dummy
calibration point and later translate this nonlinearity to a new value referenced to the real
calibration point. For theoretical evaluation, the dummy calibration power can be O.

When the nonlinearity is smu a polynomial is a good representation of the conversion
function of a detector[2,3]:
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g(v) = &b’v’. (4)
.

It is assumed here that the dark output of the detector is always adjusted to O. The
nonlinearity then has the form:

Measurement Methods

Methods for the measurement of detector nonlinearity can be divided into two categories:
dependent and independent measurements. Dependent methods always involve the known
values or the measurement of some physical quantities other than the output of the
detector under test The attenuation method falls in this category because the prior
knowledge of the transmittance of a filter is required. Independent methods rely solely on
the measurement of the output of the device under test. The superposition (addition)
method and the differential method belong to this group. Independent methods are now
favored over dependent methods. The superposition, differential, and attenuation methods
are considered in this study. If the transmittance of the filter is treated as an unknown
parameter in the curve fitting, the attenuation method without prior knowledge of the
transmittance of the filter can also be used. In this way, it becomes an independent
method.

Sulxmosition method[2,4,5]
The superposition method relies on the fact that for a linear detector, the sum of the
outputs corresponding to two individual beams should equal the output when the two
beams are combined and incident on the detector at the same time. If the outputs of the
individual and combined beams are measured at enough points, the conversion function
g(V) can be derived by curve-fitting and the nonlinearity of the detector can be calculated.

Attenuation Method[4]
A filter with a density constant throughout the power range of the measurement is used as
an optical power attenuator. Powers before and after the attenuation are measured at
several different levels. If the detector is linear, the attenuation at different powers should
be the same. If it is not linear, the conversion function can be determined from the
measurement data. If the transmittance of the filter is known, the method falls in the
dependent group; if it is unknown, it is an independent method. Data processing is
different for these two cases.

Differential Method[3]
A small, constant ac power is superimposed on a dc power. A dc meter and an ac meter
are used to measure the ac output at different dc outputs. When the ac input is sufficiently
small, the ac output is approximately proportional to the reciprocal of the derivative of the
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conversion curve at V. The first derivative of the conversion function is thus obtained, and
the conversion function is determined by integration.

Commter simulation

We conducted computer simulations to study the effects of random error in the data,
systematic error due to the truncating of polynomial, their combined effe@ and their effect
on different methods. The simulations were performed in the following way. We assumed
a polynomial of finite order as an original response function whose nonlinearity is known.
Usually, a real conversion function would need a polynomial of infinite order to represent
it. Also, the inverse function of an arbitrary polynomial of finite order is generalIy a
polynomial of infinite order. In this sense, the conversion function which is the inverse
function of our assumed response function, resembles the conversion function of a real
detector, and we can use it to study the error due to the truncating of higher orders. The
specific forms of the response functions we assumed for our simulations are given in the
Appendix.

From the assumed response polynomial, we created data of incident powers and their
corresponding outputs in the same way as they are taken by different methods. Conversion
polynomials of orders from 2 to 5 were determined from these data by curve fitting. The
difference between the resultant curve and the original cume is the systematic error due
to the truncation of the polynomial. The magnitude of this systematic error will depend
on the methods used.

We then introduced random errors with chosen standard deviations into the output data
(V) and processed the data to get the conversion curve. The random errors are Gaussian
distributed. The difference now between the conversion curve and the original curve is
caused by both the truncation of the polynomial and the random deviation of the data.
This difference is the error in the measurement of the nonlinearity. We call it nonlinearity
error in the presentation of the simulation results below.

This process was repeated 50 times and the
difference of the nonlinearities of the original

r.so

average and standard deviation u of the
and the resultant cumes were calculated

(6)

where NLO denotes the nonlinearity of the original cmve and ~ denotes the resultant
nonlinearity of the jth measurement- This standard deviation can also be expressed as
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(7)

where fi is the average nonlinearity of the 50 measurements. The first term represents

the systematic error due to truncation of the polynomial, and the second term is the
uncertainty caused by data random error scatter. We call c in Equation (6) total error or
combined error. In the figures of the simulation resul~ this u is called nonlinearity error.

There are three types of random errors representing different measurement situations. The
first type is where all the data have the same absolute standard deviations independent of
the power P. This is the case when the error is due to the least count of the digital meter
or to the detector’s dark current noise. Over one decade of puwer, the relative random
emor for this type of data varies by one order of magnitude. The second type results when
the data have equal relative standard deviations. In this case, the standard deviation of the
random error is proportional to the power. A typical example is noise due to source
intensity fluctuations. The third type is error due to shot noise. In this case, the error is
proportional to the square root of the power. Our simulation considers the first two cases
only because the magnitude of the error in the third case lies somewhere between the first
two cases.

The simulation results are presented in the following figures, where, when different
methods are presented on the same plot SP stands for superpositio~ AT-1 for attenuation
method with known transmittance, AT-2 for attenuation method with unknown
transmittance, and DF for differential method. The response functions we assumed in the
simulations are:
3%: V = 2P + 0.05~ + 0.008P3 + 0.002~
1%: v= P - 0.03F’ + 0.05P - O.OIF
0.5%: v= P + o.o131@- 0.002P - 0.006P’
0.15%: v = 2P + 0.005P2 - 0.003P + 0.00IP
where the percentages are nonlinearities calculated at P = 1 with a dummy calibration power
at O. These percentages are also used as indicators of these functions in the figures. When
only one response function is involvecl it is always the first function listed above.
The power range considered is P=O.1 to P= 1 in arbitrary units. The dummy calibration
power is always at O unless otherwise stated. The transmittance is 0.5 for attenuation
method.

Figure 2 shows the systematic error due to truncation of the polynomial for the methods
considered. The same trend is shown for all the methods: the systematic error decreases
with increasing order of polynomial. The superposition method and attenuation method
with known transmittance have almost the same systematic error (they almost overlap in
Figure 2), while differential method yields a slightly larger error and attenuation method
without a known r gives significantly larger errors. The difference is caused by the different
fitting equations used for these methods. For example, instead of fitting the conversion
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curve directly, we are actually fitting the - - “” - -
. .-

derwat.we ot the conversion cume in the
differential method.
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Figure 2. Systematic error
truncation of polynomials.
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Figure 3. Systematic error of superposition
method for four response functions with
different nonlinearities.

The same simulation was conducted with four assumed response function% each having a
different nonlinearity. The relative significance of the terms in each polynomial was vaned
from one polynomial to another. The result for superposition method is shown as an
example in Figure 3. Although the main trend remains the same for all the cases the
magnitude of systematic error and the slope fkom one order of polynomial to the next can
be quite different. This should depend on the relative significance of each term of the
conversion polynomial instead of the nonlinearity.

Uncertainties caused by random error in the data are demonstrated in Figure 4, where all
the data have an error with same standard deviation of 0.01. In all case% error of the
result increases with increasing polynomial order. This direction of tilt is contrary to that
of the systematic error. The explanation is that a lower order polynomial has less freedom
of fitting. Its result represents the main shape of the conversion curve more than the
details of the cwve. It is therefore less influenced by any single data point. As a resul~
lower order polynomials are less affected by the random uncertainties of the data and thus
yield results with smaller deviations. The attenuation method with unknown transmittance
7 yields significantly larger resultant error than all the other metho& and the differential
method gives the least random error.

When systematic error and random error are considered at the same time, we have the
combined error, demonstrated in Figure 5 where all the data have an error with the same
standard deviation of 0.0001. Starting horn the highest order of polynomia~ where the
random error is higher than the systematic error, the random error decreases by lowering
the polynomial order until it is lower than the systematic error. Then the ~tematic error
dominates and the slope reverses its direction. As a result in this case, a third-order
polynomial yields the least total error.
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Figure 4. Uncertainty due to random
error.
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data Figure 5. Combined error.

In Figure 6, we show four cmves representing combined errors for four different response
functions with different nonlinearity-errors. fiese are the same four situations repre&nted
in Figure 3. The data in this case have an- e-mor with standard deviation of 0.0001. It is
shown that at second order, the combined error is limited by the systematic error for all
the four situations and they are all different. At the third order, two situations are
systematic error limited and two are random error limited. At fourth and fifth orders
random error is dominant for all the situations and shows no difference in magnitude,
which implies that the resultant error due to random uncertainty does not rely on the form
of the response function. Therefore, the conclusions about the random error can be
applied to any real detecto~ which do not usually have similar response functions. Since
combined error can never be made lower than the systematic error, we suggest using
polynomials whose systematic error is well below the desired error.

——

!!)1:---+........................................----------------------.....-.-.......................
O.oml -

2 5
FOL& OR:ER

+33% =?1% eo.s% *0.15%

Figure 6. Combined error of superposition
method for four response functions.
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Figure 7. Errors when calibrated at zero
and at mid-point for equal absolute and
equal relative errors.

The figures shown above are all for data error of equal absolute error and for calibration
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point at O (VC=O). Simulations for equal relative error and for calibration point at the
middle of the measurement range (VC=0.5) were also conducted. A comparison between
NL(~O) and NL(V,O.5) for both equal absolute and equal relative errors is shown in
Figure 7 for attenuation method with known T. The data have an error with standard
deviation of 0.001 for curves of equal absolute error and 0.1% of the output V for curves
of equal relative error. Equal relative error yields less error when higher order polynomials
are used. Moving the calibration point from O to mid-point reduces the spread of the
results approximately by half. All the methods benefit by nearly the same amount when
moving the reference point from O to the middle.

Figure 8 demonstrates thag when the data have random scatter, increasing the number of
data points will reduce the resultant error linearly with the square root of N, the number
of data points. When the data are without error, increasing data points will have little
effect.
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Figure 8. Effect of number of data points.

Figure 9 depicts the effect of the deviation of
the transmittance T from the true value.
From this figure, we can determine what
uncertainty in r is tolerable to achieve the
target accuracy of the nonlinearity
measurement. Higher accuracy in the
transmittance is required than the target
accuracy of nonlinearity measurement. This
makes the attenuation method an unfavorable
choice against the other methods.

It is assumed in the differential method that
the ac input is veV small, so the derivative of
the conversion function is measured. In a
real measurement however, the ac input
magnitude is limited at the low end by the
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Figure 9. Effect of error in transmittance
fo; attenuation method.
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Figure 10. Error due to finite ac input for
differential method.
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signal-~noise ratio and the lowest range of the ac meter. Errors due to the finite ac input
are shown in Figure 10, where dp depicts the ac input. dP=O is the case of true derivative,
which can be realized by simulation. When the AC input is l% of the maximum dc input
the induced error is negligible (the curves for dP=O and dP=O.01 in Figure 10 virtually
overlap). When the AC input is 10% of the maximum dc input the error is noticeable but
may be tolerable for the desired accuracy.

(1) Although detector nonlinearity is expressed with reference to the calibration point it
can be measured without first calibrating the detector and expressed with reference to any
dummy calibration point. It can later be converted to nonlinearity with reference to the
real calllwation point. Dummy calibration at the middle of the measurement range will give
results with less random spread than at the calibration point at O.

(2) If the measurement condition can yield the same data accuracy for all the methods
considered we suggest using superposition method or differential method. However, the
simulations do not tell whether the same conditions can be reached in a practical system
for different methods. Many specific technical issues combined will determine the data
accuracy we can have for a particular method. Once the data accuracy is known, even
though they are different for different methods, we can still use the simulation results.

(3) Systematic error and random uncertainty behave differently in terms of the fitting
polynomial. A compromise usually must be made. Because we can reduce the random
error of the result by increasing the number of data points and the number of
measuremen~ ensuring the systematic error well below the target accuracy should be the
first consideration. Systematic error depends very much on the actual response function
of the detector. A fourth-order polynomial is recommended if the nonlinearity is very small
(at or less than 0.1%) and also the data standard deviation is very small (at or less than
0.01%). If the data standard deviation is not small and the detector nonlinearity is at or
above lYo, third-order polynomial can be used. A fifth-order polynomial will yield a higher
random uncertainty. Because using too many data points or measurements to reduce the
random error is not practical and may cause other technical problems a fifth- or higher-
order of polynomial is not recommended unless the measurement system produces data
with extremely low random noise.
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